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ABSTRACT account implicitly all kinds of degradations of the feature vec-
An on-line unsupervised hybrid compensation technique iors. ngeyer, these methods usually require more data and
proposed to reduce the mismatch between training and tescigmput!ng time than feature vector normalization mthods do
ing conditions. It combines Multi-Environment Model basedand the!r performances dggrade when the_ transcription of the
LInear Normalization with cross-probability model based onfdaptation data is not available (unsupervised methods) [5].

GMMs (MEMLIN CPM) with a novel acoustic model adap- On the other hand, feature vector normalization meth-

tation method based on rotation transformations. Hence, as?sijs' I?ZA'IgZ rgulnvasrltate Gsussgar;-_baseql ce||_o|stral réormallza-
of rotation transformations is estimated with clean and MEM-YO"™ , [6], or Stereo based Piecewise LInear Compen-

LIN CPM-normalized training data by linear regression in an_Sation for Environments, SPLICE, [7], which can be grouped

unsupervised process. Thus, in testing, each MEMLIN CP nto different classes [8], provide more on-line solutions than
normalized frame is decoded using a modified Viterbi algo-agouft': mgdtel adaptation methods using, in general, less
rithm and expanded acoustic models, which are obtained frof! aX ation data. K 191 sh hat Multi-Envi

the reference ones and the set of rotation transformations. To previous work [9] shows that Multi-Environment

test the proposed solution, some experiments with Spanig}qodel-based LInear Normalization with cross-prpbability
SpeechDat Car database were carried out. MEMLIN CPMnOdEI based on GMMs, MEMLIN CPM, (an empirical fea-

over standard ETSI front-end parameters reaches 83@&9 tzre'\;/t'\eﬂcé(l)zr normallzatl_on fTethOd based on st?ret?] da?'fa atnd
average improvement in WER, while the introduced hybridt € estimator) is effective to compensate the effects

; - f dynamic and adverse car conditions, improving the perfor-
solution goes up to 92.07. Also, the proposed hybrid tech- © ; L DU
g P Prop Y ance of techniques based on similar criterions, e.g. RATZ

r SPLICE. However, all these techniques estimate the clean
- feature vector by using a bias vector transformation, not tak-
Index Terms— robust speech recognition, feature vectoring into account several kinds of degradation, like rotations

nigue was tested with Aurora 2 database, obtaining an avera
improvement of 68.8% with clean training.

normalization, acoustic model adaptation. or variance deformations. To compensate these effects, in
this work we propose an on-line unsupervised hybrid solu-
1. INTRODUCTION tion which combines MEMLIN with cross-probability model

based on GMMs with a novel acoustic model adaptation

When training and testing acoustic conditions differ, the acmethod based on rotation transformations over an expanded
curacy of speech recognition systems rapidly degrades. TdMM-state space.
compensate this mismatch, classic robustness techniques have This paper is organized as follows: In Section 2, the pro-
been developed along two main lines of research: acoustjmosed hybrid compensation technique is presented. In Section
model adaptation methods, and feature vector normalizatioB, some considerations about MEMLIN CPM are included.
methods. Also hybrid techniques, which are the combinaThe rotation matrix estimation process is explained in Section
tion of a feature vector normalization method and an acousti4. The on-line selection of the rotation matrix for each nor-
model adaptation method, exist and they have proved to bmalized feature vector in the decoding process is presented in
effective [1]. Section 5. In Section 6, the results with Spanish SpeechDat

In general, acoustic model adaptation methods, e.g. MaGar [10] and Aurora 2 [11] databases are included. Finally,
imum A Posteriori, MAP, [2], Maximum Likelihood Linear the conclusions and future lines are presented in Section 7.
Regression, MLLR, [3]..., produce better results [4] because

they can model the uncertainty caused by the noise statistics , | ;NSUPERVISED HYBRID COMPENSATION
by mapping the parameters of the reference acoustic models

to the noisy space. Thus, acoustic model methodsitétke  The scheme of the proposed unsupervised hybrid compensa-

This work has been supported by the national project TIN 2005-0866010N tEChniql_Je_ is depicted in_Fig. 1. 1ltis Compose_zd of tWO
C04-01. phases: training and decoding. In the unsupervised train-




Training phase: environment and the noisy and clean GMM modelled spaces.
Note that MEMLIN CPM can be seen as an acoustic

Clean . GMM model adaptation technique if the reference acoustic models
1 g dat: . .
. e are composed by HMMs with GMMs as pdfs for the differ-
training —»| Feature vector | [ Rotation matrix st of rofation ent states. Thus, the score of the normalized feature vector,
data normalization estimation matrices

%¢, given a Gaussiaty (X, pirer, Xrer), is the same that the
score of the noisy feature vectgr;, given an adapted Gaus-

Decoding phase: sian, N (y¢, ref — 8t, Xrer). Furthermore, all the feature
Noisy o — S Recoanized vector normal_ization methods which transform the noisy fea-
testing A{Mrr;‘a“;mon rotation matrix }—» utterance ture vector using only a bias vector (e. g. Cepstral Mean Nor-
daa ¥ malization (CMN), RATZ, SPLICE, MEMLIN CPM...) can

Set of rotation be seen also as acoustic model adaptation techniques which

matrices

transform just the mean vectors each time index.
Fig. 1. Scheme of the proposed unsupervised hybrid compensation tech-
nigue.

4. ROTATION MATRIX ESTIMATION
ing phase, the noisy training data are compensated with the
corresponding feature vector normalization method, “Featurth order to define a set of rotation matrices which determines
vector normalization”, (MEMLIN CPM in our case), and the relation between clean and normalized feature vectors,
the clean and normalized spaces are modelled with GMMghree approximations are considered
“GMM”. Also, a set of rotation matrices is estimated by lin-

ear regression with the normalized and clean stereo training * Clean feature vectors,, are modelled using a GMM

data (“Rotation matrix estimation”), obtaining one rotation p(x¢) = Zp(xt\sw)p(sw), (D]
matrix for each pair of Gaussians (clean-normalized). On the P

other hand, in Ehe decoding phase, e.ach_ nc’),rr'nallzed tgstlng p(xe|sz) = N (x4 s, S, ), ©)
feature vector (“Feature vector normalization”) is recognized

with expanded acoustic models (“Decoding with rotation ma- wherey,,, X, , andp(s,) are the mean vector, the

trix”), which are obtained with the reference acoustic models diagonal covariance matrix, and the a priori probability
and a selected rotation matrix. The selected rotation matrixis ~ associated with the clean model Gaussian

obtained implicity during th? search process frqm the as;pci- e Normalized feature vectors;, are modelled using a
ated expanded state by using the ML criterion in a modified GMM

Viterbi algorithm. Note that there is not any restriction about

the feature vector normalization method, so that anyone can p(%e) = Zp(ﬁt\szﬁ)ﬁ(si% 3)

be used in this scheme. &

p(*t‘si) :N(kt;ﬂswzs&)r (4)

beingus,, X5, , andp(sz) the mean vector, the diago-
nal covariance matrix, and the a priori probability asso-
ciated with the normalized model Gaussign

3. FEATURE VECTOR NORMALIZATION

MEMLIN CPM [9] is the on-line selected feature vector nor-
malization technique for the hybrid compensation method in
this work, although other algorithms could be used. MEM- ¢ Normalized feature vectors can be approximated as a
LIN CPM is based on three approximations: the clean feature linear function of the clean feature vectors which de-
space is modelled as a GMM; the noisy space is split into pends on the clean and normalized model Gaussians
several basic acoustic environments and each one of themis s ands;: % ~ A., .. x;, whereA,_,, is the ro-
modelled as a GMM. Finally, the third assumption consists tation matrix betweer; andx; associated to the pair
on defining a bias vector transformation associated with each of Gaussians,, ands;.

pair of Gaussians from the clean and the noisy basic envi-

ronment spaces. To compensate a testing feature vector, the Hence, a set of rotation matrices can be defined as
MMSE estimator is used, where the cross-probability model A={A VHoedse (A AN ®)

(the probability of the clean model Gaussian given the noisy w9zt sp=1,85=1 min=0

model Gaussian and the noisy feature vector), which haswhere, to simplify the notation, the indexrepresents each

relevant importance, is modelled with GMMs as [9]. pair of Gaussians,, s; and N denotes the number of the
It can be observed that the clean estimated feature vectpair of GaussiansV = #s, X #s;.
that MEMLIN CPM provides for the time index x;, is a To estimate the rotation matricesA,, clean

shifted version of the noisy ong: x;, = y; + g, whereg, is and normalized stereo data are used jn the previ-
the corresponding bias vector which depends on the acoustimis unsupervised training phase: (X77 X*Tr) =



=17 > p(szlx{Mp(sz|%{") - Tra [(%]" — Anx{")(%{" — Anx{™)"] . (6)
t

-1
An = Ay s, = arg min{én} = Zp(sac|X$T)p(5§?|&?r)(&fr(x?T)T)‘| : [ZP(%IXtTT)p(SazIXtTT)(XtTT(XfT)T)

@)

{xIr &Iy (xEr &Iy, o (xEr, %Er) Y, with ¢ € (1,77, Once the reference acoustic models have been expanded,
where XT" is obtained after normalizing the noisy training the classic search algorithm (Viterbi) for decoding unlabeled
dataY”" (MEMLIN CPM has been selected for this purposesequences has to be modified in a similar way as [13] [14],
in this work). Thus, A,, is obtained by minimizing the computing recursively the score state variahg,,(t), for
defined mean weighted square errgy, (6) with respect to  the state(q, n) and the time index (11). In this way, the
A, (7), whereTrale] is the trace,(s)” is the transpose, rotation matrixA; for each normalized feature vector is de-
p(s;|xI") is the a posteriori probability of the clean model termined implicity for the sequence of expanded states which
Gaussiars,, given the clean training feature vectof™, and ~ maximizes the likelihood at the end of the utterance.
p(sz|%]™) is the a posteriori probability of the normalized

model Gaussiars;, given the normalized training feature ¢, (t) = El}a)f{¢q/7n/ (t=1) g ngn P(Xelg,n)}, (11)
vectorx;". o

Tr p(xI"|s2)p(5z) beingmy ./ 4. the transition probability from expanded state
p(szlx; ") = S p(xI"[5,)p(s0)’ (8) (g,n) to (¢’,n"), which in this work is assumed to be
T p(X{"|s2)p(sz) Ty
p(SA‘XT ): sTr . (9) ’ ! =~ ’ ’ %ﬂ
o >, P(X{"|s2)p(s2) Ta'ntsgn = Mgl qTnlim = T (12)
5. DECODING WITH ROTATION MATRIX whereny , is the transition probability from the reference
' SELECTION stateq to ¢/, and, ,, is the transition probability from the

matrix A, to A,,/, which is considered equiprobability for all
Given a normalized feature vectey,, a rotation matrix,A;, transitions.
is selected from the set of estimated rotation matrides,by Note that the selection &, is made at the same time of
ML maximization criterion in a similar way as [12]. Hence, decoding using the expanded acoustic models and the mod-
a set of expanded acoustic models is built, where gathte jfieq Viterbi algorithm. Thus, the presented hybrid solution
of the clean space HMM acoustic models. g [1,Q)). is €x-  ¢an be seen as decoding each MEMLIN CPM normalized fea-
panded intaV stategq, n) considering the linear approxima- tre vectork; = y; + g, with the corresponding expanded
tionx; ~ As, s, X: = Anx;. The goal of the state expansion acoustic models, where the mean vectors and covariance ma-
is to reduce the mismatch between the clean space acoustifes areA ;. andA; S AT, respectively. Note that this solu-
models and the normalized feature vectors for each rotatiogyp, provides the same results that recognizing the noisy fea-
transformation. Thus, each expanded state is specialized ifjre vector,y;, with new acoustic models where the mean
one of the rotation transformations. Assuming that a comyectors and covariance matrices #eu — g, andA,SAT,
ponents, in the pdf mixture of the original staigfollows & respectively. This point of view is conceptually similar to
normal distribution:N (x;; 1i,,, 2, ), the corresponding ex- \LR, where shift and rotation are included in acoustic mod-
panded component, ,, is assumed to follow the distribution g|s. However, the shift and rotation transformations for the
N (% Anpis,, AnXs,Ay). So, finally the pdf for the ex- proposed hybrid technique are selected for each feature vec-
panded statq, n), p(X[g,n), is @ GMM composed by the tor and are estimated with a different criterion than MLLR.
defined expanded components, where the a priori componeRjso, the unsupervised MLLR version needs a previous step
weights remain unaltereg(s,,») = p(sq): to provide an estimation of the transcription of the adaptation
data (usually a recognition process), so that the performance
p(Xtlg,n) = Zp(sq)N(fit; Anps,, AnS,,AT). (10)  ofthe unsupervised MLLR solution can degrade dramatically,
5q especially in high noise conditions or difficult tasks (e.g. large
Note that the proposed expanded acoustic models, fromwacabulary, spontaneous speech...) due to the estimation of
generative point of view, can be seen as a more flexible speethe transcription can not be precise enough. These problems
production process for normalized space, since they can gede not affect to the proposed hybrid on-line technique, which
erate sequences of rotated feature vectors more suitable to fiseunsupervised and does not precise the transcription of the
normalized space. adaptation data.



Train Test El E2 E3 E4 E5 E6 E7 ‘ AWER (%)

CLK CLK 095 232 0.70 0.25 0.57 0.32 0.00 0.91
CLK HF 3.05 1329 1552 27.32 31.36 35.5663.06 21.48
HF HF 3.81 6.86 3.50 376 496 4.44 3.06 4.63
1 HF HF 114 4.37 1.68 2.13 2.10 2.06 23.13 3.42
HF MLLR HF 1.33 455 2.52 3.63 7.34 5.24 26.19 5.28
CLKA HF MEMLIN CPM | 2.10 3.86 154 288 2.86 1.43 1.70 2.54

Table 1. WER baseline results, i#%, from the different basic environments (E1,..., E7) of Spanish SpeechDat Car database, where MWER
is the Mean WER.

6. RESULTS Average WER computed proportionally to the number of ut-
terances in each basic environment. “Train” column refers to

To study the performance of the proposed unsupervised otthe signals used to obtain the corresponding acoustic HMMs:
line hybrid compensation technique, a set of experiment€LK if they are trained with all clean training utterances, and
were carried out using two databases. On one hand, the SpadF and if they are trained with all noisy ones. HF indi-
ish SpeechDat Car database [10], which is composed by re@ates that specific acoustic models are trained for each basic
dynamic, and complex environments. On the other hand, Auenvironment. All acoustic models are obtained with ML al-
rora 2 [11], which does not represent real environments dugorithm. “Test” column indicates which signals are used for
to the noise has been artificially added, but it has been widelsecognition: clean, CLK, or noisy, HF.
applied to compare robustness techniques. Table 1 shows the effect of real car conditions, which

In both cases, the recognition task is isolated and continncreases the WER in all of the basic environments, (Train
uous digits recognition. As feature set, the standard ETSCLK, Test HF), concerning the rates for clean conditions,
front-end [15] features plus energy and the correspondin@Train CLK, Test CLK). When acoustic models are retrained
delta and delta delta coefficients are used. Cepstral mean navith ML algorithm using all basic environment signals (Train
malization is applied to testing and training data. The differ-HF), AWER decreases, 4.83 Finally, the most competitive
ent feature vector normalization techniques are applied to theesults (3.42% AWER) are obtained when specific acoustic
12 MFCCs and energy, whereas the derivatives are computedodels are retrained for each basic environment with ML al-
over the normalized static coefficients. The acoustic modelgorithm, (Traint HF), despite the poor WER reached with
are composed of 16 state HMM for each digit, a 3 state beginE7 due to the reduced amount of data for that condition (67
end silence HMM and a 1 state inter-word silence HMM. Inutterances). However, this option is not possible in a real sit-
all cases, each pdf state is composed by a mixture of thragation because the basic environment can not be known for
Gaussians. each testing utterance.

Figure 2 shows the Average Improvement in WER
(AIMP) in % for MEMLIN CPM and the proposed hybrid
Seven basic environments were defined: car stopped, mottichnique based on MEMLIN CPM (MEMLIN CPM A)
running (E1), town traffic, windows close and climatizer off when different number of Gaussians per basic environment
(silent conditions) (E2), town traffic and noisy conditions: are considered for the feature vector normalization techniques
windows open antbr climatizer on (E3), low speed, rough (4, 8, 16, 32, 64 and 128). Furthermore, SPLICE with Envi-
road, and silent conditions (E4), low speed, rough road, angPnmental Model selection (SPLICE EM) [16]) is included to
noisy conditions (E5), high speed, good road, and silent corFompare. In case of MEMLIN CPM, clean feature space is
ditions (E6), and high speed, good road, and noisy conditiondodelled with the same number of Gaussians than the basic
(E7). environments and the cross-probability model is composed by

The clean signals are recorded with a Close talkZ Gaussians. Also, 17 rotation matrices are estimated in all
(CLK) microphone (Shune SM-10A), and the noisy ones ar&ases ffs. = #s: = 4, plus the identity matrix). AIMP is
recorded by a Hands-Free (HF) microphone placed on theomputed with AWER as
ceiling in front of the driver (Peiker ME15/V520-1). The SNR AL _ 100(AWER — AWERcLKk—1F)
range for CLK signals goes from 20 tq 30 dB,_ a_nd for HF ones AWERcLE oLk — AWERcLK 1P
goes from 5 to 20 dB. The unsupervised training process has
been carried out with CLK and HF signals of the training setwhere AW ERcrx—cri iS the mean WER obtained with

The Word Error Rate (WER) baseline results for each baelean conditions (0.91 in this case), aAW ERcrkx—nr IS
sic environment are presented in Table 1, where AWER is ththe baseline (21.48). So, A 120AIMP would be achieved

6.1. Results with Spanish SpeechDat Car corpus

,» (13)
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: tions, while the system is tuned on the noise types from set A.
< oot f—ﬂ"’" All the improvements are computed with respect to the results
Z_ asl ] reached with standard ETSI front-end (5806f average).
= JEPTEL b e R a Figure 3 shows the word accuracy result§imwith clean
ESO'HF' ] training for the proposed hybrid technique based on MEM-
o 75 [ SRR LIN CPM when basic environments and clean space are mod-
%70_ o ] elled with 128 Gaussians. The cross-probability model is
5 o composed by 2 Gaussians and 17 rotation matrices are esti-
% 65'65 ] mated §s, = #s; = 4) plus the identity matrix.

& 60} — MEMLINCPM A It can be observed an important improvement in set A,
%’ 55} -a- MEMLIN CPM 71.99%, where the proposed hybrid technique is applied over
50 . . | o SPLICEEM the same kinds of noise which have been observed in the train-
0 20 40 60 80 100 120 ing process. Also competitive results have been reached in set

Number of Gaussians per basic environment. B (73.31% of average improvement), where the testing con-

Fig. 2. Average improvement in WER, AIMP, if% with Spanish Speech- ditioqs incIuQe differe'nt. kinds of additive noise that the ones
Dat Car database for different normalization techniques: SPLICE with enviCOnsidered in the training process. However, the results are
ronmental model selection (SPLICE EM), MEMLIN with Cross-Probability not as satisfactory for set C, which includes a different convo-
Model based on GMMs (MEMLIN CPM) and the proposed hybrid techniquetiona| distortion from the training set. This indicates that the
based on MEMLIN CPM and acoustic model adaptation based on rotatlo?ranSformationS learnt with the training data may be not rep-
transformations (MEMLIN CPM A). . 3 -
resentative of those required in set C. In summary, from the

when AWER equals the one obtained under clean conditiongesults in Fig. 3, a reasonable and consistent improvement for

It can be verified in Fig. 2 the important improvement thatall the noise conditions can be appreciated, obtaining an av-
the presented hybrid solution obtains when it is applied ovegrage improvement slightly better than the one obtained with
MEMLIN CPM for any number of Gaussians per basic en-ETSI Advanced front-end [17] (67.4d). Note that, com-
vironment concerning SPLICE EM and MEMLIN CPM. In paring with ETSI Advanced front-end results, the behavior
fact, the performance with 32 components per basic enviroref the proposed hybrid technique under seen conditions (set
ment (92.0% AIMP, 2.54% AWER) is significantly better A) is much better (71.98 versus 66.5%), while for set B,
than the best results for SPLICE EM (74%®&IMP, 6.25%  which includes unseen additive noises, the average improve-
AWER) and MEMLIN CPM (83.8% AIMP, 4.23% AWER);  ments are similar. On the other hand, the behavior of the pro-
even if matched training condition (81 83AIMP, 4.63%  posed hybrid technique degrades in set C. From these results,
AWER) or specific acoustic models for each basic environwe can conclude that a reasonable future work line could be
ment (87.8% AIMP, 3.42% AWER) are considered, the per- to improve the performance of the presented technique under
formances are slightly inferior with respect to the one ob-unseen conditions.
tained with the proposed hybrid solution due to the noisy
space is more heterogenous than the normalized one. Also, 7. CONCLUSIONS
note that a reduced number of Gaussians per environmentliﬁ this paper we have presented an on-line unsuper-
enough to obtain satisfactory results (8848IMP, 3.28%  ;sed hybrid compensation solution which combines Multi-
AWER with only two components per basic environment). g ironment Model based Linear Normalization with cross-
The complete best WER results obtained with the hybrid Soﬁ)robability model based on GMMs, MEMLIN CPM. with a

lution are also included in Table 1 (Train CLK A, Test HF ), o1 acoustic model adaptation technique based on rotation
MEMLIN). Also the performance of unsupervised MLLR, yanstormations which depend on GMMs. Although, other
where the transcription obtained from the decoding of thgqqy e vector techniques can be used. The purpose of the
noisy data is assumed as the_true one, IS presented in Tﬁ)’/brid solution is to compensate jointly the shift and rotation
ble 1 to complete the comparison (Train HF MLLR, Testjq.qced by the acoustic environment. Some results with
HF). Note that the reached performance in this case (AWEkanish SpeechDat Car database show the effective perfor-
5.28%, 78.77% AIMP) is inferior than the match training con- -0 o ot the proposed technique (92/03f mean improve-
dition_results and the ones obtained with the proposed hybripnent with 32 Gaussians per basic environment) with respect
technique. to classic feature vector normalization techniques: SPLICE
EM (74.08%), and MEMLIN CPM (83.8%), or acoustic
model adaptation techniques: unsupervised MLLR (78)/7

For the Aurora work, identical utterances from the clean trainAlso important improvements have been obtained with Au-
ing set and the multicondition training set have been usetbra 2 database (68.%5, even better than the one obtained
in the unsupervised training process for the hybrid solutionwith ETSI Advanced front-end (67.44). As future lines we
Thus, the noise types from set B and C keep as unseen congiropose to use the hybrid solution with other feature vector

6.2. Results with Aurora 2 corpus



911 9903 9914 9929 9914 oM 903 914 929 914 98] 908 %
9640 9828 9851 9824 9836 9837 9801 9827 9864|9831 9770 9767 97,69
97,73 9756 9744] 97,2 97850 9691 9717 9656 97,33 9699 9629 9561 9.9
9556 9858 9509 9532 9489 9328 0161 9256 9426 9293 9017 8998 90,07
= 9023 81,12 8500 8390 8633 &53 7841 8191 89| 8148 7018  7746| 7382 7
7053 5349 6009 7005| 6354] 57,10 5456 6089 57,86 57,60 3511 4970 43,90
B 3710 27,56 27,72] 3859|3274 2921 2829 30,73 2882 2926 17,39 2465 21,02
049 8480 &724] 8% 8812 564 8395 8602 862 85 7849  a208] so2sE V"
69,88%| 77,41%] 60,37%| 71,31%| 71,99%] 77,48%| 62,8%%| 77,34%| 7553%| 13,31%| 5225%| 52,06%] 52,16%) 68,55%
56,32%] 77,13%] 70,10% 62,72%| 66,507 7424%| 6317%| 7930%| 7635%| 7327% 59,91% 54.84% 51,307

Fig. 3. Word accuracy and improvement obtained for Aurora 2 corpus with the proposed hybrid technique based on MEMLIN CPM and acoustic mode
adaptation based on rotation transformations, and with ETSI Advanced front-end.

normalization techniques, and in different tasks, e. g. large[9] L. Buera, E. Lleida, J.A. Nolazco, A. Miguel, and
vocabulary. Furthermore, we are working to improve the
method when it is applied under unseen conditions.
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