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ABSTRACT

An on-line unsupervised hybrid compensation technique is
proposed to reduce the mismatch between training and test-
ing conditions. It combines Multi-Environment Model based
LInear Normalization with cross-probability model based on
GMMs (MEMLIN CPM) with a novel acoustic model adap-
tation method based on rotation transformations. Hence, a set
of rotation transformations is estimated with clean and MEM-
LIN CPM-normalized training data by linear regression in an
unsupervised process. Thus, in testing, each MEMLIN CPM
normalized frame is decoded using a modified Viterbi algo-
rithm and expanded acoustic models, which are obtained from
the reference ones and the set of rotation transformations. To
test the proposed solution, some experiments with Spanish
SpeechDat Car database were carried out. MEMLIN CPM
over standard ETSI front-end parameters reaches 83.89% of
average improvement in WER, while the introduced hybrid
solution goes up to 92.07%. Also, the proposed hybrid tech-
nique was tested with Aurora 2 database, obtaining an average
improvement of 68.88% with clean training.

Index Terms— robust speech recognition, feature vector
normalization, acoustic model adaptation.

1. INTRODUCTION

When training and testing acoustic conditions differ, the ac-
curacy of speech recognition systems rapidly degrades. To
compensate this mismatch, classic robustness techniques have
been developed along two main lines of research: acoustic
model adaptation methods, and feature vector normalization
methods. Also hybrid techniques, which are the combina-
tion of a feature vector normalization method and an acoustic
model adaptation method, exist and they have proved to be
effective [1].

In general, acoustic model adaptation methods, e.g. Max-
imum A Posteriori, MAP, [2], Maximum Likelihood Linear
Regression, MLLR, [3]..., produce better results [4] because
they can model the uncertainty caused by the noise statistics
by mapping the parameters of the reference acoustic models
to the noisy space. Thus, acoustic model methods takeinto
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account implicitly all kinds of degradations of the feature vec-
tors. However, these methods usually require more data and
computing time than feature vector normalization methods do
and their performances degrade when the transcription of the
adaptation data is not available (unsupervised methods) [5].

On the other hand, feature vector normalization meth-
ods, e. g. multivariate Gaussian-based cepstral normaliza-
tion, RATZ, [6], or Stereo based Piecewise LInear Compen-
sation for Environments, SPLICE, [7], which can be grouped
into different classes [8], provide more on-line solutions than
acoustic model adaptation methods using, in general, less
adaptation data.

A previous work [9] shows that Multi-Environment
Model-based LInear Normalization with cross-probability
model based on GMMs, MEMLIN CPM, (an empirical fea-
ture vector normalization method based on stereo data and
the MMSE estimator) is effective to compensate the effects
of dynamic and adverse car conditions, improving the perfor-
mance of techniques based on similar criterions, e.g. RATZ
or SPLICE. However, all these techniques estimate the clean
feature vector by using a bias vector transformation, not tak-
ing into account several kinds of degradation, like rotations
or variance deformations. To compensate these effects, in
this work we propose an on-line unsupervised hybrid solu-
tion which combines MEMLIN with cross-probability model
based on GMMs with a novel acoustic model adaptation
method based on rotation transformations over an expanded
HMM-state space.

This paper is organized as follows: In Section 2, the pro-
posed hybrid compensation technique is presented. In Section
3, some considerations about MEMLIN CPM are included.
The rotation matrix estimation process is explained in Section
4. The on-line selection of the rotation matrix for each nor-
malized feature vector in the decoding process is presented in
Section 5. In Section 6, the results with Spanish SpeechDat
Car [10] and Aurora 2 [11] databases are included. Finally,
the conclusions and future lines are presented in Section 7.

2. UNSUPERVISED HYBRID COMPENSATION

The scheme of the proposed unsupervised hybrid compensa-
tion technique is depicted in Fig. 1. It is composed of two
phases: training and decoding. In the unsupervised train-



Fig. 1. Scheme of the proposed unsupervised hybrid compensation tech-
nique.

ing phase, the noisy training data are compensated with the
corresponding feature vector normalization method, “Feature
vector normalization”, (MEMLIN CPM in our case), and
the clean and normalized spaces are modelled with GMMs,
“GMM”. Also, a set of rotation matrices is estimated by lin-
ear regression with the normalized and clean stereo training
data (“Rotation matrix estimation”), obtaining one rotation
matrix for each pair of Gaussians (clean-normalized). On the
other hand, in the decoding phase, each normalized testing
feature vector (“Feature vector normalization”) is recognized
with expanded acoustic models (“Decoding with rotation ma-
trix”), which are obtained with the reference acoustic models
and a selected rotation matrix. The selected rotation matrix is
obtained implicity during the search process from the associ-
ated expanded state by using the ML criterion in a modified
Viterbi algorithm. Note that there is not any restriction about
the feature vector normalization method, so that anyone can
be used in this scheme.

3. FEATURE VECTOR NORMALIZATION

MEMLIN CPM [9] is the on-line selected feature vector nor-
malization technique for the hybrid compensation method in
this work, although other algorithms could be used. MEM-
LIN CPM is based on three approximations: the clean feature
space is modelled as a GMM; the noisy space is split into
several basic acoustic environments and each one of them is
modelled as a GMM. Finally, the third assumption consists
on defining a bias vector transformation associated with each
pair of Gaussians from the clean and the noisy basic envi-
ronment spaces. To compensate a testing feature vector, the
MMSE estimator is used, where the cross-probability model
(the probability of the clean model Gaussian given the noisy
model Gaussian and the noisy feature vector), which has a
relevant importance, is modelled with GMMs as [9].

It can be observed that the clean estimated feature vector
that MEMLIN CPM provides for the time indext, x̂t, is a
shifted version of the noisy oneyt: x̂t = yt+gt, wheregt is
the corresponding bias vector which depends on the acoustic

environment and the noisy and clean GMM modelled spaces.
Note that MEMLIN CPM can be seen as an acoustic

model adaptation technique if the reference acoustic models
are composed by HMMs with GMMs as pdfs for the differ-
ent states. Thus, the score of the normalized feature vector,
x̂t, given a Gaussian,N (x̂t, μref ,Σref ), is the same that the
score of the noisy feature vector,yt, given an adapted Gaus-
sian,N (yt, μref − gt,Σref ). Furthermore, all the feature
vector normalization methods which transform the noisy fea-
ture vector using only a bias vector (e. g. Cepstral Mean Nor-
malization (CMN), RATZ, SPLICE, MEMLIN CPM...) can
be seen also as acoustic model adaptation techniques which
transform just the mean vectors each time index.

4. ROTATION MATRIX ESTIMATION

In order to define a set of rotation matrices which determines
the relation between clean and normalized feature vectors,
three approximations are considered

• Clean feature vectors,xt, are modelled using a GMM

p(xt) =
∑

sx

p(xt|sx)p(sx), (1)

p(xt|sx) = N (xt;μsx ,Σsx), (2)

whereμsx , Σsx , andp(sx) are the mean vector, the
diagonal covariance matrix, and the a priori probability
associated with the clean model Gaussiansx.

• Normalized feature vectors,̂xt, are modelled using a
GMM

p(x̂t) =
∑

sx̂

p(x̂t|sx̂)p(sx̂), (3)

p(x̂t|sx̂) = N (x̂t;μsx̂ ,Σsx̂), (4)

beingμsx̂ , Σsx̂ , andp(sx̂) the mean vector, the diago-
nal covariance matrix, and the a priori probability asso-
ciated with the normalized model Gaussiansx̂.

• Normalized feature vectors can be approximated as a
linear function of the clean feature vectors which de-
pends on the clean and normalized model Gaussians
sx and sx̂: x̂t ≈ Asx,sx̂xt, whereAsx,sx̂ is the ro-
tation matrix between̂xt andxt associated to the pair
of Gaussianssx andsx̂.

Hence, a set of rotation matrices can be defined as

A = {Asx,sx̂}
#sx,#sx̂
sx=1,sx̂=1

= {An}
N
n=1, (5)

where, to simplify the notation, the indexn represents each
pair of Gaussianssx, sx̂ andN denotes the number of the
pair of Gaussians:N = #sx ×#sx̂.

To estimate the rotation matricesAn, clean
and normalized stereo data are used in the previ-
ous unsupervised training phase: (XTr, X̂Tr) =
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whereX̂Tr is obtained after normalizing the noisy training
dataYTr (MEMLIN CPM has been selected for this purpose
in this work). Thus,An is obtained by minimizing the
defined mean weighted square error,ξn, (6) with respect to
An (7), whereTra[•] is the trace,(•)T is the transpose,
p(sx|xTrt ) is the a posteriori probability of the clean model
Gaussiansx, given the clean training feature vectorxTrt , and
p(sx̂|x̂Trt ) is the a posteriori probability of the normalized
model Gaussiansx̂, given the normalized training feature
vectorx̂Trt .

p(sx|x
Tr
t ) =

p(xTrt |sx)p(sx)∑
sx
p(xTrt |sx)p(sx)

, (8)

p(sx̂|x̂
Tr
t ) =

p(x̂Trt |sx̂)p(sx̂)∑
sx̂
p(x̂Trt |sx̂)p(sx̂)

. (9)

5. DECODING WITH ROTATION MATRIX
SELECTION

Given a normalized feature vector,x̂t, a rotation matrix,At,
is selected from the set of estimated rotation matrices,An, by
ML maximization criterion in a similar way as [12]. Hence,
a set of expanded acoustic models is built, where eachq state
of the clean space HMM acoustic models, (q ∈ [1, Q]), is ex-
panded intoN states(q, n) considering the linear approxima-
tion x̂t ≈ Asx,sx̂xt = Anxt. The goal of the state expansion
is to reduce the mismatch between the clean space acoustic
models and the normalized feature vectors for each rotation
transformation. Thus, each expanded state is specialized in
one of the rotation transformations. Assuming that a com-
ponentsq in the pdf mixture of the original stateq follows a
normal distribution:N (xt;μsq ,Σsq ), the corresponding ex-
panded componentsq,n is assumed to follow the distribution
N (x̂t;Anμsq ,AnΣsqA

T
n ). So, finally the pdf for the ex-

panded state(q, n), p(x̂t|q, n), is a GMM composed by the
defined expanded components, where the a priori component
weights remain unaltered:p(sq,n) = p(sq):

p(x̂t|q, n) =
∑

sq

p(sq)N (x̂t;Anμsq ,AnΣsqA
T
n ). (10)

Note that the proposed expanded acoustic models, from a
generative point of view, can be seen as a more flexible speech
production process for normalized space, since they can gen-
erate sequences of rotated feature vectors more suitable to the
normalized space.

Once the reference acoustic models have been expanded,
the classic search algorithm (Viterbi) for decoding unlabeled
sequences has to be modified in a similar way as [13] [14],
computing recursively the score state variable,φq,n(t), for
the state(q, n) and the time indext (11). In this way, the
rotation matrixAt for each normalized feature vector is de-
termined implicity for the sequence of expanded states which
maximizes the likelihood at the end of the utterance.

φq,n(t) = max
q′,n′
{φq′,n′(t− 1) ∙ πq′,n′,q,n ∙ p(x̂t|q, n)}, (11)

beingπq′,n′,q,n the transition probability from expanded state
(q, n) to (q′, n′), which in this work is assumed to be

πq′,n′,q,n ≈ πq′,qπn′,n ≈
πq′,q

N
, (12)

whereπq′,q is the transition probability from the reference
stateq to q′, andπn′,n is the transition probability from the
matrixAn toAn′ , which is considered equiprobability for all
transitions.

Note that the selection ofAt is made at the same time of
decoding using the expanded acoustic models and the mod-
ified Viterbi algorithm. Thus, the presented hybrid solution
can be seen as decoding each MEMLIN CPM normalized fea-
ture vector,̂xt = yt + gt, with the corresponding expanded
acoustic models, where the mean vectors and covariance ma-
trices areAtμ andAtΣATt , respectively. Note that this solu-
tion provides the same results that recognizing the noisy fea-
ture vector,yt, with new acoustic models where the mean
vectors and covariance matrices areAtμ − gt andAtΣATt ,
respectively. This point of view is conceptually similar to
MLLR, where shift and rotation are included in acoustic mod-
els. However, the shift and rotation transformations for the
proposed hybrid technique are selected for each feature vec-
tor and are estimated with a different criterion than MLLR.
Also, the unsupervised MLLR version needs a previous step
to provide an estimation of the transcription of the adaptation
data (usually a recognition process), so that the performance
of the unsupervised MLLR solution can degrade dramatically,
especially in high noise conditions or difficult tasks (e.g. large
vocabulary, spontaneous speech...) due to the estimation of
the transcription can not be precise enough. These problems
do not affect to the proposed hybrid on-line technique, which
is unsupervised and does not precise the transcription of the
adaptation data.



Train Test E1 E2 E3 E4 E5 E6 E7 AWER (%)

CLK CLK 0.95 2.32 0.70 0.25 0.57 0.32 0.00 0.91

CLK HF 3.05 13.29 15.52 27.32 31.36 35.5653.06 21.48

HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63

† HF HF 1.14 4.37 1.68 2.13 2.10 2.06 23.13 3.42

HF MLLR HF 1.33 4.55 2.52 3.63 7.34 5.24 26.19 5.28

CLK A HF MEMLIN CPM 2.10 3.86 1.54 2.88 2.86 1.43 1.70 2.54

Table 1. WER baseline results, in%, from the different basic environments (E1,..., E7) of Spanish SpeechDat Car database, where MWER
is the Mean WER.

6. RESULTS

To study the performance of the proposed unsupervised on-
line hybrid compensation technique, a set of experiments
were carried out using two databases. On one hand, the Span-
ish SpeechDat Car database [10], which is composed by real,
dynamic, and complex environments. On the other hand, Au-
rora 2 [11], which does not represent real environments due
to the noise has been artificially added, but it has been widely
applied to compare robustness techniques.

In both cases, the recognition task is isolated and contin-
uous digits recognition. As feature set, the standard ETSI
front-end [15] features plus energy and the corresponding
delta and delta delta coefficients are used. Cepstral mean nor-
malization is applied to testing and training data. The differ-
ent feature vector normalization techniques are applied to the
12 MFCCs and energy, whereas the derivatives are computed
over the normalized static coefficients. The acoustic models
are composed of 16 state HMM for each digit, a 3 state begin-
end silence HMM and a 1 state inter-word silence HMM. In
all cases, each pdf state is composed by a mixture of three
Gaussians.

6.1. Results with Spanish SpeechDat Car corpus

Seven basic environments were defined: car stopped, motor
running (E1), town traffic, windows close and climatizer off
(silent conditions) (E2), town traffic and noisy conditions:
windows open and/or climatizer on (E3), low speed, rough
road, and silent conditions (E4), low speed, rough road, and
noisy conditions (E5), high speed, good road, and silent con-
ditions (E6), and high speed, good road, and noisy conditions
(E7).

The clean signals are recorded with a CLose talK
(CLK) microphone (Shune SM-10A), and the noisy ones are
recorded by a Hands-Free (HF) microphone placed on the
ceiling in front of the driver (Peiker ME15/V520-1). The SNR
range for CLK signals goes from 20 to 30 dB, and for HF ones
goes from 5 to 20 dB. The unsupervised training process has
been carried out with CLK and HF signals of the training set.

The Word Error Rate (WER) baseline results for each ba-
sic environment are presented in Table 1, where AWER is the

Average WER computed proportionally to the number of ut-
terances in each basic environment. “Train” column refers to
the signals used to obtain the corresponding acoustic HMMs:
CLK if they are trained with all clean training utterances, and
HF and if they are trained with all noisy ones.† HF indi-
cates that specific acoustic models are trained for each basic
environment. All acoustic models are obtained with ML al-
gorithm. “Test” column indicates which signals are used for
recognition: clean, CLK, or noisy, HF.

Table 1 shows the effect of real car conditions, which
increases the WER in all of the basic environments, (Train
CLK, Test HF), concerning the rates for clean conditions,
(Train CLK, Test CLK). When acoustic models are retrained
with ML algorithm using all basic environment signals (Train
HF), AWER decreases, 4.63%. Finally, the most competitive
results (3.42% AWER) are obtained when specific acoustic
models are retrained for each basic environment with ML al-
gorithm, (Train† HF), despite the poor WER reached with
E7 due to the reduced amount of data for that condition (67
utterances). However, this option is not possible in a real sit-
uation because the basic environment can not be known for
each testing utterance.

Figure 2 shows the Average Improvement in WER
(AIMP) in % for MEMLIN CPM and the proposed hybrid
technique based on MEMLIN CPM (MEMLIN CPM A)
when different number of Gaussians per basic environment
are considered for the feature vector normalization techniques
(4, 8, 16, 32, 64 and 128). Furthermore, SPLICE with Envi-
ronmental Model selection (SPLICE EM) [16]) is included to
compare. In case of MEMLIN CPM, clean feature space is
modelled with the same number of Gaussians than the basic
environments and the cross-probability model is composed by
2 Gaussians. Also, 17 rotation matrices are estimated in all
cases (#sx = #sx̂ = 4, plus the identity matrix). AIMP is
computed with AWER as

AIMP =
100(AWER−AWERCLK−HF )

AWERCLK−CLK −AWERCLK−HF
, (13)

whereAWERCLK−CLK is the mean WER obtained with
clean conditions (0.91 in this case), andAWERCLK−HF is
the baseline (21.48). So, A 100% AIMP would be achieved
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Fig. 2. Average improvement in WER, AIMP, in% with Spanish Speech-
Dat Car database for different normalization techniques: SPLICE with envi-
ronmental model selection (SPLICE EM), MEMLIN with Cross-Probability
Model based on GMMs (MEMLIN CPM) and the proposed hybrid technique
based on MEMLIN CPM and acoustic model adaptation based on rotation
transformations (MEMLIN CPM A).

when AWER equals the one obtained under clean conditions.
It can be verified in Fig. 2 the important improvement that

the presented hybrid solution obtains when it is applied over
MEMLIN CPM for any number of Gaussians per basic en-
vironment concerning SPLICE EM and MEMLIN CPM. In
fact, the performance with 32 components per basic environ-
ment (92.07% AIMP, 2.54% AWER) is significantly better
than the best results for SPLICE EM (74.08% AIMP, 6.25%
AWER) and MEMLIN CPM (83.89% AIMP, 4.23% AWER);
even if matched training condition (81.93% AIMP, 4.63%
AWER) or specific acoustic models for each basic environ-
ment (87.81% AIMP, 3.42% AWER) are considered, the per-
formances are slightly inferior with respect to the one ob-
tained with the proposed hybrid solution due to the noisy
space is more heterogenous than the normalized one. Also,
note that a reduced number of Gaussians per environment is
enough to obtain satisfactory results (88.49% AIMP, 3.28%
AWER with only two components per basic environment).
The complete best WER results obtained with the hybrid so-
lution are also included in Table 1 (Train CLK A, Test HF
MEMLIN). Also the performance of unsupervised MLLR,
where the transcription obtained from the decoding of the
noisy data is assumed as the true one, is presented in Ta-
ble 1 to complete the comparison (Train HF MLLR, Test
HF). Note that the reached performance in this case (AWER
5.28%, 78.77%AIMP) is inferior than the match training con-
dition results and the ones obtained with the proposed hybrid
technique.

6.2. Results with Aurora 2 corpus

For the Aurora work, identical utterances from the clean train-
ing set and the multicondition training set have been used
in the unsupervised training process for the hybrid solution.
Thus, the noise types from set B and C keep as unseen condi-

tions, while the system is tuned on the noise types from set A.
All the improvements are computed with respect to the results
reached with standard ETSI front-end (58.06% of average).

Figure 3 shows the word accuracy results in% with clean
training for the proposed hybrid technique based on MEM-
LIN CPM when basic environments and clean space are mod-
elled with 128 Gaussians. The cross-probability model is
composed by 2 Gaussians and 17 rotation matrices are esti-
mated (#sx = #sx̂ = 4) plus the identity matrix.

It can be observed an important improvement in set A,
71.99%, where the proposed hybrid technique is applied over
the same kinds of noise which have been observed in the train-
ing process. Also competitive results have been reached in set
B (73.31% of average improvement), where the testing con-
ditions include different kinds of additive noise that the ones
considered in the training process. However, the results are
not as satisfactory for set C, which includes a different convo-
lutional distortion from the training set. This indicates that the
transformations learnt with the training data may be not rep-
resentative of those required in set C. In summary, from the
results in Fig. 3, a reasonable and consistent improvement for
all the noise conditions can be appreciated, obtaining an av-
erage improvement slightly better than the one obtained with
ETSI Advanced front-end [17] (67.41%). Note that, com-
paring with ETSI Advanced front-end results, the behavior
of the proposed hybrid technique under seen conditions (set
A) is much better (71.99% versus 66.57%), while for set B,
which includes unseen additive noises, the average improve-
ments are similar. On the other hand, the behavior of the pro-
posed hybrid technique degrades in set C. From these results,
we can conclude that a reasonable future work line could be
to improve the performance of the presented technique under
unseen conditions.

7. CONCLUSIONS

In this paper we have presented an on-line unsuper-
vised hybrid compensation solution which combines Multi-
Environment Model based LInear Normalization with cross-
probability model based on GMMs, MEMLIN CPM, with a
novel acoustic model adaptation technique based on rotation
transformations which depend on GMMs. Although, other
feature vector techniques can be used. The purpose of the
hybrid solution is to compensate jointly the shift and rotation
introduced by the acoustic environment. Some results with
Spanish SpeechDat Car database show the effective perfor-
mance of the proposed technique (92.07% of mean improve-
ment with 32 Gaussians per basic environment) with respect
to classic feature vector normalization techniques: SPLICE
EM (74.08%), and MEMLIN CPM (83.89%), or acoustic
model adaptation techniques: unsupervised MLLR (78.77%).
Also important improvements have been obtained with Au-
rora 2 database (68.55%), even better than the one obtained
with ETSI Advanced front-end (67.41%). As future lines we
propose to use the hybrid solution with other feature vector



Fig. 3. Word accuracy and improvement obtained for Aurora 2 corpus with the proposed hybrid technique based on MEMLIN CPM and acoustic model
adaptation based on rotation transformations, and with ETSI Advanced front-end.

normalization techniques, and in different tasks, e. g. large
vocabulary. Furthermore, we are working to improve the
method when it is applied under unseen conditions.
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